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We study the Laplace operator subject to Dirichlet boundary conditions in a two-
dimensional domain that is one-to-one mapped onto a cylinder (rectangle or infinite
strip). As a result of this transformation the original eigenvalue problem is reduced to
an equivalent problem for an operator with variable coefficients. Taking advantage
of the simple geometry we separate variables by means of the Fourier decomposition
method. The ODE system obtained in this way is then solved numerically, yielding
the eigenvalues of the operator. The same approach allows us to find complex reso-
nances arising in some noncompact domains. We discuss numerical examples related
to quantum waveguide problems. The aim of these experiments is to compare the
method based on the separation of variables with the standard finite-volume proce-
dure. For the most computationally difficult examples related to domains with narrow
throats one can clearly see the advantages of the proposed method.c© 2001 Elsevier Science
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1. INTRODUCTION

The object of this study is the Dirichlet Laplacian in a deformed cylinder (i.e., a domain
that is mapped onto a rectangle or an infinitely long strip, depending on whether the domain
is compact or noncompact). A typical example of a deformed cylinder is a waveguide where
the propagation of waves is governed by the Helmholtz equation. The two major types of
waves observed in waveguides are referred to as trapped modes and resonance solutions.
Both of these are eigenfunctions of the relevant differential equation and both satisfy the
given boundary conditions. The trapped modes decay rapidly at infinity (the technical
condition is that they lie inL2) and the corresponding eigenvalues are real. The resonances
on the other hand satisfy a radiation condition at infinity. They represent quasistable states
of the system and correspond to complex eigenvalues. Their real parts give the energies
of the resonances while the inverses of the imaginary parts determine the lifetimes of the
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resonances. Resonances located close to the real axis are mathematically quite distinct from
eigenvalues, but physically they have very similar effects on the behaviour of the system.
It is quite common for a trapped mode to turn into a resonance with a small imaginary part
when the region is slightly deformed.

There is a large literature studying resonances, particularly in quantum chemistry
[20, 15, 19, 16] and acoustics [10, 17, 9, 6, 1, 18], to mention just the works most closely
related to this paper. The subject also arises in the study of quantum waveguides, which
are assuming increasing importance in the design of quantum-level electronic devices. We
refer to the series of papers [13, 11, 12] where bound states and scattering in quantum
waveguides are considered and to [22], where the authors address the problem of finding
quantum resonances numerically for a particular waveguide.

Despite the extensive analysis carried out in the mentioned and other related literature,
there still exist substantial problems in computing resonances close to the real axis. At the
same time, resonances with small imaginary parts are often regarded as the most important
case occurring in applications. It is this situation that interests us and motivates our study.

Waveguide phenomena are usually associated with either Dirichlet or Neumann boundary
conditions. The former correspond to scattering problems in quantum theory, the latter
appear in acoustics. The cited papers are concerned with either eigenvalues or resonances
occurring in waveguides under specific conditions, or both of these. Our paper is very close
in spirit to [6] and [1]. In the former the main issue is the resonance–eigenvalue connection,
and the technique of the latter is also based on the separation of variables.

Our intention is to study the above-mentioned problems numerically. Dealing with both
of them involves solving a boundary value problem for the Dirichlet Laplacian in two
dimensions, which is either a self-adjoint eigenvalue problem or a non-self-adjoint resonance
problem. Along with general numerical methods applicable in two dimensions, there exist
techniques especially designed for cylinderlike domains, also called ducts in acoustics. We
have already mentioned [1, 18], where such methods are developed. Both of these papers
stress the importance of advanced methods specially designed for acoustic waveguides. It
is hardly surprising that carefully performed numerical analysis is equally important for
quantum problems. In [18] the authors apply a second-order finite-difference method and
implement an iterative procedure for the resulting algebraic system. It is mentioned there
that standard methods not using any preconditioning are likely to fail, especially when a
large wave number is involved.

The numerical approach proposed in [1] is similar in spirit to that of our paper. In both
cases the Helmholtz equation is reduced to the so-called coupled mode system of equations
via the separation of variables. The main difference is that in [1] the coefficients of the ODE
system have to be computed numerically, whereas our choice of the Fourier expansion
functions allows us to find them in closed form. This substantially reduces the CPU time.
The Dirichlet problem studied here is separable, as opposed to the much less straightforward
Robin case. The examples in the cited paper are related to higher frequencies while we
concentrate on the lowest oscillation mode only. On the other hand, the transfer method we
use for the final ODE problem is able to handle a waveguide with narrow throats, such as
that illustrated in Fig. 1—a situation not covered in [1].

The aim of this paper is to elaborate a method suitable for deformed cylinders that takes
account of their geometry. The method based on the Fourier decomposition in one direction
allows us to separate variables in the Helmholtz equation explicitly, leading to a system of
ODEs. This is done for a fairly general geometry in the next section. In Section 3 we discuss
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FIG. 1. Waveguide with indentations.

different boundary conditions involved. First we deal with standard self-adjoint conditions;
then we concentrate on noncompact domains and define resonances by a specific boundary
condition at infinity. What is often called the radiation condition in the literature is rewritten
in terms of the resulting ODE system. We end up with a non-self-adjoint eigenvalue problem
on a finite interval whose solution approximates that of the original resonance problem.
Finally, we use the transfer method of [2] to find the eigenvalues of the two problems. Our
numerical results illustrate the closeness of eigenvalues and resonances and are presented
in Section 4, where we conclude by discussing the rate of convergence.

To be able to compare the method of the paper with others we look at the finite-volume
method described, for example, in [21]. As discussed in Section 4, the proposed approach
tested on our eigenvalue examples proved to be significantly more efficient than the standard
two-dimensional procedure.

2. SEPARATION OF VARIABLES FOR THE LAPLACIAN

2.1. Change of Variables

Consider the operatorH := −1 acting onL2(Ä) subject to Dirichlet boundary condi-
tions. The domainÄ is defined as

Ä = {(ξ, η): a < ξ < b, 0< η < ϕ(ξ)} (2.1)

in Cartesian coordinates(ξ, η). The possibility ofa andb being infinite is not excluded
here, so thatÄ is not necessarily compact. The functionϕ(ξ) is assumed to be smooth and
to satisfyϕ(ξ) > 0, ξ ∈ [a, b]. To find the spectrum ofH we solve the Helmholtz equation

−1 f (ξ, η) = λ f (ξ, η), (ξ, η) ∈ Ä, (2.2)

with the boundary conditions

f (ξ, η) = 0, (ξ, η) ∈ ∂Ä. (2.3)
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The change of variables

x = ξ, y = η/ϕ(ξ) (2.4)

maps the deformed cylinderÄ ontoÄ0 = {(x, y): a < x < b, 0< y < 1}, which is either
a rectangle or a strip (infinite or semiinfinite). We mention that a similar method has been
used by Borisovet al. [7] to study bound states associated with a local perturbation of a
strip or layer. In our case the deformation reduces the width of the strip locally, and there
are no bound states. The transformation (2.4) can be expressed in the differential form as

∇ξη = W∇xy, ∇xy =
 ∂

∂x

∂
∂y

, W =
1 − ϕ′y

ϕ

0 1
ϕ

.
The quadratic form corresponding toH is given by

J( f ) =
∫
Ä

[(∇ξη f,∇ξη f )− λ( f, f )] dξ dη

or, equivalently, by

J( f ) =
∫
Ä0

[(W∇xy f,W∇xy f )− λ( f, f )]ϕ(x) dx dy.

This can be rewritten as

J( f ) =
∫
Ä0

[(A∇xy f,∇xy f )− λ( f, f )]ϕ(x) dx dy, (2.5)

where

A = W∗W =
 1 − ϕ′y

ϕ

− ϕ′y
ϕ

(1+ (ϕ′y)2)
ϕ2

. (2.6)

Hence the Helmholtz equation in the new variables takes the form

(ϕ fx)x − (ϕ′y fx)y − (ϕ′y fy)x + ((1+ (ϕ′y)2) fy/ϕ)y + λϕ f = 0. (2.7)

Since we restrict ourselves to the Dirichlet case, no change in the boundary conditions
is required here; the condition (2.3) is retained on∂Ä0. However, in a generic situation one
can still use (2.4) and (2.7), provided obvious changes are made to the original boundary
conditions where necessary. For instance, instead of Neumann boundary conditions atη =
ϕ(ξ) one would have

((1+ ϕ′2) fy − ϕϕ′ fx)|y=1 = 0,

while Neumann boundary conditions atx = a, b would become

(ϕ fx − ϕ′y fy)|x=a,b.
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Note that a similar transformation can be also done for a more general domain:

Ä = {(ξ, η): a < ξ < b, ϕ1(ξ) < η < ϕ2(ξ)}.

The change of variables

x = ξ, y = η − ϕ1

ϕ2− ϕ1

leads to a quadratic form of type (2.5), whose coefficients are not quoted here, for brevity.

2.2. Discretisation in the y-Direction

The quadratic form (2.5) is related to the transformed operator on the weighted space
L2(Ä0, ϕ dx dy). Here and below we use the notation∇ = ∇xy.

To discretise the formJ( f ) in the y-direction let us separate the variables expandingf
as

f (x, y) =
∞∑

k=1

gk(y)hk(x). (2.8)

Recall that we have Dirichlet boundary conditions everywhere so that our natural choice is
to work with an orthonormal system of functions vanishing at the horizontal parts of the
boundary. We therefore opt for

gk =
√

2 sin(πky).

Denote f0 = f, f1 = fx, f2 = fy; then

fi =
∞∑

k=1

hi
k(x)g

i
k(y),

where

g0
k = g1

k = gk, g2
k =
√

2 cos(πky).

In this notation thex-dependence is determined by the functions

h0
k = hk, h1

k = h′k, h2
k = πkhk

(throughout the paper a prime denotes differentiation with respect tox).
We notice that the variables are separated in the coefficients ofJ( f ):

ϕ(x)Ai j (x, y) = Bi j (x)+ Ci j (y)Di j (x), i, j = 1, 2. (2.9)

The entriesAi j of the matrixA are defined by (2.6); the matricesB,C, andD satisfying
the above decomposition are

B =
(
ϕ 0

0 1
ϕ

)
, C =

(
0 y

y y2

)
, D =

 0 −ϕ′

−ϕ′ ϕ′2

ϕ

.
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The formula (2.9) allows us to rewrite (2.5) in the form

J( f ) =
∫ b

a

∫ 1

0

[
2∑

i, j=1

(Bi j + Ci j Di j ) f̄ i f j − λϕ| f |2
]

dx dy

=
∫ b

a

[
2∑

i, j=1

Bi j

∫ 1

0
f̄ i f j dy+ Di j

∫ 1

0
Ci j f̄ i f j dy− λϕ

∫ 1

0
| f |2 dy

]
dx

=
∫ b

a

[
2∑

i, j=1

Bi j Ei j + Di j Fi j − λϕG

]
dx. (2.10)

As we substitute the expansion (2.8) into the above integral, the coefficientsEi j , Fi j ,G are
readily computed:

Ei j =
∫ 1

0
f̄ i f j dy =

∫ 1

0

∑
k

h̄i
kgi

k

∑
r

h j
r g j

r dy

=
∑
k,r

h̄i
kh j

r

∫ 1

0
gi

kg j
r dy =

∑
k,r

α
i j
kr h̄

i
kh j

r ;

Fi j =
∫ 1

0
Ci j f̄ i f j dy =

∫ 1

0
Ci j

∑
k

h̄i
kgi

k

∑
r

h j
r g j

r dy

=
∑
k,r

h̄i
kh j

r

∫ 1

0
Ci j g

i
kg j

r dy =
∑
k,r

β
i j
kr h̄

i
kh j

r ;

G =
∫ 1

0

∑
k

h̄0
kg0

k

∑
r

h0
r g0

r dy =
∑

k

|hk|2.

To find αi j
kr we use the orthogonality relations forgi

k; in fact, we only need the diagonal
elementsα j j

kr = δkr . The coefficientsβ i j
kr are also calculated in the closed form:

β11
kr = 0, β22

kr =


1
3 + 1

2π2k2 , k = r,

(−1)k+r 4(k2+ r 2)

π2(k2− r 2)2
, k 6= r,

β12
kr = β21

rk =
−

1
2πk , k = r,

(−1)k+r 2k
π(r 2− k2)

, k 6= r.

The quadratic form is now reduced to that of a one-dimensional differential problem.

2.3. Canonical ODE System

Having done the above calculations we finally arrive at

J( f ) =
∫ b

a

[∑
k

|h′k|2+
([
πk

ϕ

]2

− λ
)
|hk|2

+
∑
k,r

ϕ′2

ϕ2
π2krβ22

kr h̄khr − ϕ
′

ϕ
π
(
rβ12

kr h̄′khr + kβ12
rk h̄kh′r

)]
ϕ dx.
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The Euler equations are easily derived in the standard way. A simple calculation shows
that the discretised form (2.10) is equivalent to the ODE system written in its canonical
self-adjoint form as

−(Ph′)′ + Qh′ − (Q∗h)′ + Rh= 0. (2.11)

Here the vector of unknowns is

h = (h1, h2, . . .)
T ;

the matrix coefficients are given by

Pkr = ϕδkr , Qkr = −πkβ12
rk ϕ
′,

Rkr = π2krβ22
kr

ϕ′2

ϕ
+
(
(πk)2

ϕ
− λϕ

)
δkr , k, r = 1, 2, . . . .

For practical purposes we truncate the system to a finite number of equations, taking a
sufficiently largeN and keeping the same notationh, P, Q, R for the truncated matrices
wherek, r = 1, . . . , N. This is justified by the fact that the Fourier coefficients involved
in (2.8) are rapidly decaying ink and therefore higher order terms can be neglected. In [1]
it has been suggested thatN should be of orderh

√
λ, whereh denotes the mean width

of the duct if the curvature of its boundary is not too large. In the examples in Section 4
the width of the waveguide varies greatly from point to point. The size ofN is determined
experimentally and is found to depend mainly on the width of the narrowest portion of the
waveguide.

Equivalently, we reduce (2.11) to the Hamiltonian system of 2N equations,

J H′ = K (x, λ)H, x ∈R, (2.12)

where

H =
(

h

Ph′ + Q∗h

)
∈ L2(R), J =

(
0 −I

I 0

)
,

K =
(
−R+ Q P−1Q∗ −Q P−1

−P−1Q∗ P−1

)
.

The system (2.12) is self-adjoint withP = P∗ > 0, R= R∗ for λ ∈ R. We can therefore
apply advanced numerical methods (see, for example, [2, 3]) to find the eigenvalues of the
problem and the relevant solutions. Before proceeding to this task let us discuss the issue
of boundary conditions.

3. BOUNDARY CONDITIONS

3.1. The Self-Adjoint Problem

To make sure the original boundary conditions are involved in the ODE problem, consider
a generic situation when we have a functional
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J( f ) =
∫
Ä0

F(x, y, f, fx, fy) dx dy.

To derive the corresponding Euler equation we replacef with f + εγ and compute

δJ = ε
∫
Ä0

γ

(
Ff − ∂

∂x
Ffx −

∂

∂y
Ffy

)
dx dy+ ε

∫
∂Ä0

γ
(
Ffx dy− Ffy dx

)
.

Putting the first integral equal to zero we obtain the differential equation (2.7); the second is
responsible for boundary conditions. For our class of problems∂Ä0 = {y = 0} ∪ {y =
1} ∪ {x = a} ∪ {x = b}. The conditions at different parts of the boundary are defined
by

∫ b

a
γ Ffy

∣∣
y=0; 1 dx = 0;

∫ 1

0
γ Ffx

∣∣
x=a;b dy = 0.

Taking account of the obtained quadratic form, we get∫ b

a
γ fy|y=0 dx = 0, (3.1)

∫ b

a
γ

(
ϕ′(x) fx − 1+ ϕ′2

ϕ
fy

)∣∣∣∣
y=1

dx = 0 (3.2)

on the horizontal lines. As pointed out in Section 2.1, Dirichlet boundary conditions remain
unchanged in the new variables and are automatically taken into account by virtue of our
choice of the functionsgk(y) in (2.8). The above integrals (3.1) and (3.2) vanish because
of the implied conditionγ = 0. A difficulty would only occur if we had more complicated
conditions at the curvilinear part of the boundary ofÄ. Dirichlet boundary conditions are the
ones relevant to quantum mechanical problems and they enable us to separate the variables in
the quadratic form explicitly. We refer to [1], where the authors consider arbitrary boundary
conditions of the form(a f + b∂ f

∂n )|∂Ä = 0 by using appropriate orthogonal curvilinear
coordinates. The problem of this kind requires a more complicated expansion to be used
instead of (2.8). In that case Fourier coefficients are not obtained in closed form but should
be calculated numerically.

On the vertical parts of the boundary we have

∫ 1

0
g(ϕ fx − ϕ′y fy)|x=a, b dy = 0. (3.3)

The Dirichlet case is as easy to treat as before: the conditionshk(a) = hk(b) = 0, k =
1, . . . , N are imposed on the solutions of (2.12). Consider also a domain whereϕ′(a) =
ϕ′(b) = 0 — the situation typical for compactly perturbed strips and, in particular, for some
waveguides. Here we are able to handle a more general case. For instance, Neumann bound-
ary conditions atx = a, b do not change and becomeh′k(a) = h′k(b), k = 1, . . . , N in
terms of the system (2.12). However, one cannot fully separate variables in generic Robin
conditions of form (3.3).
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3.2. The Radiation Condition

There are three technically distinct methods of defining resonances. The one which we
give below involves imposing a so-called radiation condition at infinity on the eigenfunction.
In many situations, including the present one, this is known to be equivalent to the definition
via poles of the scattering matrix [8, 22, 6], but here we do not make essential use of this
fact. One may also define resonances using a standard method referred to as (exterior)
complex scaling. The resonances of the original operator becomeL2 eigenvalues of a new
non-self-adjoint operator; once again one may show that this method yields the same set of
resonances. See below for further comments on this method.

Turning to our particular resonance problem, let us consider a domainÄ such that, in the
notation of Section 2.1,x ∈ (a,∞) and

ϕ(x) ∼ 1, x ≥ X (3.4)

for someX > 0. Similar assumptions are often made in papers dealing with scattering
problems, for instance in [1, 18, 6]. We take Dirichlet boundary conditions on∂Ä and
require a different type of condition to be satisfied as|x| → ∞. Namely, for a givenλ ∈ C
there always exists a unique solution of (2.2) that has the form

f (x, y) = (exp(−t1x)+ s1 exp(t1x))g1(y)+
∞∑

k=2

skgk(y) exp(tkx), x ≥ X. (3.5)

Here we denote

tk = −
√
(πk)2− λ, Retk < 0;

gk are the same as in Section 2.2. The coefficientssk, k = 1, 2, . . . are defined by the formula
(3.5) uniquely for each value ofλ. We putω = √λ and considersk as functions ofω. The
functions1, called the scattering coefficient of the problem, is involved in the definition of
resonances. The reader will find their general definition in [8]. Note that when variables are
separated the following construction proves to be more handy.

DEFINITION. If the scattering coefficients1(ω) has a pole atω = ω0 we say thatλ = ω2
0

is a resonance.

The above definition does not include all the resonances but only those lying on the first
nonphysical sheet (see [8] for detailed explanation). We refer to [22, 6] for the equivalence
of the two definitions. Apart from its simplicity, the approach based on (3.5) has another
distinctive advantage. It is known from scattering theory thats1(ω)s̄1(ω̄) = 1 and thats1

is analytic in the half-plane Imω < 0. Therefore instead of seeking the poles ofs1(ω) one
can look for its zeros located in the lowerω-half-plane. This is the approach we use here,
along with the separation of variables in the deformed cylinderÄ.

Given the above definition, there is an obvious difference between the resonance problem
and a classical spectral problem. Indeed, according to (3.5) here we are looking for a solution
exponentially growing at infinity. Note, however, that the resonances we are interested in
occur as perturbations of eigenvalues and are typically situated near the real axis. This means
that the values of|Im tk|, k = 1, 2, . . . , are rather small and therefore the corresponding
solution grows slowly.
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Combining (3.5) with (2.8) for a sufficiently largex we get

h1(x) = exp(−t1x)+ s1 exp(t1x), h′k(x) = tkhk(x), k = 2, 3, . . . .

There are two ways to handle these conditions. One can solve the inhomogeneous problem
(as has been done in [6] in two dimensions), then find the zeros ofs1. Alternatively one
can puts1 = 0 straight away, then solve the resulting eigenvalue problem withλ-dependent
boundary conditions. The latter approach leads to the set of boundary conditions atX

ψX H(X) = 0, ψX = (T − P−1Q∗, P−1), T = diag(t1,−t2 . . . ,−tN). (3.6)

This formula, known as the radiation or outgoing wave condition, singles out the solution
whose first component grows and whose others decay exponentially at infinity. It is this
solution that is sometimes called the resonance eigenfunction.

It should be mentioned here that our approach agrees with the one that uses exterior
complex scaling (see, for example, [8]). In this technique one replaces the operator with a
family of operators on the same domain, which depends analytically on a complex parameter.
The operators are independent of the parameter forx ≤ X and are associated with a space
scaling forx ≥ X. One computes the complex eigenvalues of this family acting inL2(Ä)and
proves that they do not depend on the parameter, subject to certain conditions. It is known
that the complex eigenvalues coincide with resonances defined via either the scattering
coefficients or analytic continuation of the resolvent kernels. One may verify that exterior
complex scaling yields the same boundary condition atx = X as (3.6) (see [14]).

4. NUMERICAL EXAMPLES

4.1. The Transfer Method

Summarising the results of the first three sections let us formulate the problems to be
solved numerically. We are looking for such values ofλ that the system (2.12) has a nontrivial
solution satisfying

ψa H(a) = 0, ψbH(b) = 0,

where (i)ψa = ψb = (I , 0) and (ii)ψa = (I , 0),ψb = ψX, as defined by (3.6). Problem (i)
provides approximations to the Dirichlet eigenvalues of a compact domain of kind (2.1);
problem (ii) enables us to calculate complex resonances that may occur in an unbounded
domain of the same type satisfying (3.4).

The method we apply to both problems is based on the orthogonal transfer of [2], which
we briefly outline below. The manifold of the solutions of the system (2.12) satisfying the
left boundary condition is determined by

ψ(x)H(x) = 0, a ≤ x ≤ b,

whereψ ∈ CN×2N solves the Cauchy problem

ψ ′ = ψ J K, ψ(a) = ψa.
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Theoretically one can integrate the above equation for a fixedλ, define

f (λ) = det

(
ψ(b; λ)
ψb(λ)

)
and solve f (λ) = 0 to find the eigenvalues of the problem. This method is known to be
hopelessly inefficient becauseψ(x), although formally of rankN, can have almost linearly
dependent rows. Abramov [2] proposed replacingψ with ψ̃(x) = ν(x)ψ(x), whereν ∈
CN×N, detν 6= 0. The functionν is chosen to ensurẽψ(x)ψ̃∗(x) = const. The transfer
equation now takes the form

ψ̃ ′ + ψ̃ J A
(

I − ψ̃∗(ψ̃ψ̃∗)−1
ψ̃
)
= 0, ψ̃(a) = ψa. (4.1)

The RHS of (4.1) is bounded and the solutionψ̃ exists on the whole of [a, b]. By com-
parison withψ , the matrixψ̃ has the key advantage of being easily computed without
loss of rank. The use of this idea proved essential to obtaining stable results for this
problem.

Having calculated the smooth functioñψ we proceed to find the eigenvalues. For the
resonance problem this is done along the lines of [4], where the idea of [2] has been applied
to non-self-adjoint eigenvalue problems. As observed there,

f̃ (λ) = det

(
ψ̃(b)
ψb

)
= f (λ) detν,

so that the zeros off and f̃ coincide. Moreover, the zeros of̃f can be found using the
method based on the argument principle, althoughf̃ does not have to be analytic inλ as
opposed tof . Still the number of zeros of̃f inside a contour0 is

N = 1

2π

∮
0

d Arg f̃ (λ),

as shown in [4]. It is this computational formula that we use to locate the complex eigenvalues
of problem (ii). Taking a shrinking sequence of contours0 we find the zeros up to a chosen
accuracy. We computed the contour integrals reliably for circles of radii down to 10−4

and made sure that if the centre was shifted by a similar order of magnitude, the integrals
vanished. In the better conditioned case (i) we applied Newton’s method, allowing us to
calculate the eigenvalues of the self-adjoint problem.

Note that typically problem (ii) is much harder to solve than is (i), and our examples are
no exception. When resonances are situated near the real axis the scattering coefficients1

has a pole and a zero close to one another. Naturally, the closer they are, the less stable the
problem is.

4.2. Results of Computations

As an example we consider a quantum waveguide with indentations defined in the Carte-
sian coordinates(ξ, η) as

W = {−∞ < ξ <∞, 0< η < ϕ(ξ) = 1− α(e−(ξ−γ )2 + e−(ξ+γ )
2)}
,

whereα andγ are real positive constants (see Fig. 2a).
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FIG. 2. Narrow-throated domains.

We work in two different domains:

Ä1 = W ∩ {0< ξ < γ }, Ä2 = W ∩ {0< ξ}.

The domainsÄ1 andÄ2 relate to problems (i) and (ii) of the previous section, respectively.
In the latter the resonance boundary condition is imposed at a sufficiently far pointX, as
suggested in Section 3.2. In our experiments we putγ = 2, so that it suffices to takeX ≥ 5.4
to ensureϕ′(X) < 10−4.

In this example there existsα = α∗ ≈ 1 such that the two parts of∂Ä touch one an-
other nearξ = γ . For this value ofα the domainÄ consists of three disjoint parts,
as shown in Fig. 2b, so that the eigenvalue problem is decomposed into three separate
problems. The Laplacian considered in the compact domainÄ∗ has infinitely many real
eigenvalues accumulating at infinity. As we decreaseα joining the three subdomains, one
expects the eigenvalues to disappear, generating resonances in their neighbourhood. A
similar phenomenon, where resonances originate from eigenvalues as the domain is per-
turbed, has been observed in [6], although the mechanism by which they emerge is different
here.

Clearly, both domainsÄ1 andÄ2 satisfy the conditions of Section 2.1 forα < α∗. We
compute resonances (i.e., eigenvalues of problem (ii) for a range ofα) using the deformed
cylinder approach. In the self-adjoint example the eigenvalues of problem (i) are found
for the same values ofα. The ODE problem is solved by the transfer method described
in the previous section. An important question is how to choose the number of terms to
be retained in (2.8) or, in other words, the dimension of the system (2.12). This number
should depend onα: indeed, forα close toα∗ the width of the domain is small nearξ = γ ,
so one needs to keep a larger number of termsgk(y) in (2.8). There are two possibilities
here. One is to increase repeatedly the number of terms by one and solve the system with
the corresponding constant number of unknowns until the answers converge. Or, instead of
keeping a large number of terms throughout the interval, one can start off with a smaller
N in (2.12). Moving along thex-interval one changesN gradually, adding or removing
variableshk(x) depending on the size ofϕ(x). We have used both techniques in different
situations, ensuring that the results coincide within the chosen accuracy for two subsequent
values ofN. For reasonably small values ofα it suffices to take smallerN: for instance,
whenα = 0.8 the results obtained forN = 4 and greater coincide up to the tolerance of
10−4. The maximal number of terms taken in our computations isN = 30 for α = 0.97
(the largest value considered).
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There is an important connection between problems (i) and (ii) which makes us study
them within the same framework. Namely, asα→ α∗ both the eigenvalues ofÄ1 and the
resonances ofÄ2 converge to the Dirichlet eigenvalues of the domainÄ∗. These cannot
be found using the same method becauseÄ∗ has a cusp atξ = γ and is not a deformed
cylinder in our terminology. In this case one could still separate variables in the Helmholtz
equation in a similar way, arriving at a singular ODE problem. This question requires a
separate consideration, which is beyond the subject of our paper. Recall that the aim of our
numerical experiments is to calculate resonances occurring in this example and find out
how they are related to eigenvalues. To be able to make proper comparisons we have used
the finite-volume method to discretise the operator onÄ∗ and find its spectrum. To know
the limit eigenvalue is also helpful, as it serves as an initial guess for the eigenvalues of
problems (i) and (ii).

4.2.1. The self-adjoint problem.We applied both the finite-volume method and the
ODE technique to a series of problems of type (i) to compare the effectiveness of the two
approaches. The comparisons are in favour of the proposed method, which appears to be
more efficient than the conventional one. The relative benefits of our technique are more
spectacular for larger values ofα. For α > 0.9 the finite-volume method becomes very
unstable and does not provide accurate results any longer, while the new method works
safely for a wider range, up toα = 0.97. The two methods agree with each other forα ≤ 0.9.
Everything else being equal, the closerα gets to its critical value, the more advantageous
the deformed cylinder approach is in comparison with the finite-volume method.

Of course if one were to use commercial packages, one could surely treat anα somewhat
bigger than 0.9 by using standard methods, but the same comment could be made about
our method: if it were developed at a commercial level several further elaborations could
be incorporated to improve its performance.

The numerical results presented below are related to the lowest Dirichlet eigenvalue of
Ä∗ and are quoted in terms of the wave numberω = √λ (we retain the term eigenvalue
for the wave numbers). The smallest eigenvalue corresponding to the domain with the
cusp isω∗ = 4.6252; it is included in the diagrams to illustrate the convergence of our
results.

In Fig. 3 a series of the eigenvalues of problem (i) forα ∈ [0.7, 0.97] is shown. They
converge toω∗ asα→ α∗. The linear rate of convergence is in agreement with standard per-
turbation theory: the principal correction term is of orderε = α∗ − α since the coefficients
of (2.12) depend onα linearly.

4.2.2. The resonance problem.We showed in Section 3.2 that the problem of finding
resonances effectively reduces to a non-self-adjoint boundary value problem in a truncated,
compact domain. The resonances can then be computed using various methods, for instance
a non-self-adjoint version of the finite-volume method. An example similar to those of
our paper has been numerically studied in [6], where the reader can also find a detailed
description of the method put in the relevant context. It is that procedure that we use to
benchmark the separation-of-variables approach and make further comparisons.

The resonancesω2 emerging from the lowest eigenvalue asα decreases can be found
in Table I. They are also shown in Fig. 4, where their real parts are plotted against their
imaginary parts. The quoted resonances are obtained using the new method and they agree
with those found using the finite-volume method up to the chosen accuracy forα ≤ 0.9,
beyond which the finite-volume method becomes unstable. On the other hand the resonances
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TABLE I

Resonancesω2

α ω2 α ω2

0.7 4.2988+ 0.0545i 0.9 4.5250+ 0.0050i
0.75 4.3715+ 0.0348i 0.925 4.5492+ 0.0032i
0.8 4.4223+ 0.0212i 0.95 4.5755+ 0.0017i
0.825 4.4498+ 0.0154i 0.96 4.5864+ 0.0012i
0.85 4.4741+ 0.0113i 0.97 4.5967+ 0.0008i

FIG. 3. Eigenvalues of problem (i) for a range ofα.

FIG. 4. Resonances generated byω∗.
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FIG. 5. Real and imaginary parts of resonances:α-dependence.

calculated by the separation-of-variables approach definitely converge toω∗. The problem
is, of course, very sensitive to perturbations near the critical value ofα = α∗, or ε = 0.
However, we found that forα ≤ 0.97 our computations are relatively stable and believe
that they provide reliable results. Forα > 0.97 we have observed various instability effects,
preventing us from computing resonances accurately. The system (2.12) is difficult to solve
for values ofω close toω∗ (and, consequently, the corresponding resonance) because its
coefficients change very rapidly forα ≈ α∗. Even methods suitable for stiff systems fail
to produce satisfactory results whenε is too small. As discussed in the previous section,
another reason why the problem is likely to be unstable is the closeness of resonances to
the real axis. These two factors make calculations slow and inefficient forα close toα∗.
Once again the non-self-adjoint analogue of the finite-volume method proves to be less
robust than our new procedure. The range of values ofα, for which the results obtained
using the two methods are comparable, is the same as in the self-adjoint problems of the
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TABLE II

The Values ofδ = ω1 − Reω2

ε 0.3 0.25 0.2 0.175 0.15
δ 0.0436 0.0256 0.0182 0.0144 0.0123

ε 0.1 0.075 0.05 0.04 0.03
δ 0.0081 0.0044 0.0015 0.0008 0.0004

previous section. Forα > 0.9 one cannot trust the standard discretisation technique, but the
deformed cylinder approach works forα up to about 0.97.

Theα-dependence of the real and imaginary parts of the resonance originating fromω∗
is shown in Fig. 5. The real part is found to depend on the perturbation parameter linearly,
whereas the imaginary part seems to be of orderεp, with p ≈ 3/2 for ε < 0.2. A different
behaviour has been observed in [6], where for a different geometry the authors derived an
asymptotic formula for the imaginary part of the resonance. The resonances in the example
of that paper are shown to be analytic in the domain perturbation parameter, their imaginary
parts depending quadratically on the parameter.

One generally expects that if one perturbs an eigenvalue which is embedded in the
continuous spectrum, then it is transformed into a resonance near the real axis. In many cases
one can even write out a perturbation expansion, and a general theory for some such cases
was described by Agmon [5]. However in our situation the natural parameterε can only take
positive values, for obvious reasons. Therefore even if the resonance depends analytically
on ε for ε > 0, there is no proof that it has an expansion with finite coefficients around
ε = 0, nor even that the resonance converges to the eigenvalue asε ↓ 0. The numerical
experiments do, however, suggest that not only does it converge, but its real and imaginary
parts also may be expanded in powers ofε1/2 asε ↓ 0.

In Table II the eigenvalues of problem (i) are compared with the real parts of the resonances
related to the same values ofα. We tabulate the differenceδ = ω1− Reω2 between the
Dirichlet eigenvalue and the real part of the associated resonance and observe that this
quantity decreases very rapidly asε ↓ 0. One might hope to deduce the rate of convergence
of δ(ε) from asymptotic perturbation formulae. The question of how to obtain such formulae
for the resonance still remains open.

5. CONCLUSIONS

The main idea of this paper was to reduce an eigenvalue problem in a two-dimensional
deformed cylinder to an ODE problem. Complex resonances occurring in deformed strips
were also dealt with in the same way.

The method of this paper allowed us to discretise the problem in one direction, taking into
account the geometry of the domain. This was especially important for the highly distorted
domains of Section 4. We could of course have considered only perturbed cylinders (i.e.,
cylinders for which the throat is quite wide), but in this case a variety of different numeri-
cal codes would have yielded the same results without difficulty. The case of very narrow
throats is much more challenging. The intrinsic instability of the problem might in principle
be handled either by the use of finite meshes, which are highly refined near the throat, or by
normalisation to a straight cylinder, in which case one must accept the appearance of large
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coefficients in the relevant differential operator. Eventually any method will fail, and the is-
sue is how close one can get to the critical value. The relative advantage of our method relies
upon the special techniques available for one-dimensional systems, which are highly de-
veloped at a theoretical level and easy to implement numerically. Standard finite-difference
methods would require a significant mesh refinement in the narrow part of the considered
waveguide. For comparison purposes we also computed the eigenvalues and resonances
using the finite-volume method. As discussed in the previous section, the latter proved to be
substantially less efficient than the method based on the separation of variables for the class
of problems studied here. The new method works faster and, more importantly is able to
treat a wider range of problems. This is in agreement with the already mentioned results of
[1, 18], where other advanced methods were designed to suit similar problems. We be-
lieve that our approach is competitive and recommend it for ill-conditioned eigenvalue
and resonance problems. Our confidence is supported by the strong agreement between
numerical results and analytic expectations. Indeed, the convergence of both eigenvalues
and resonances to their limit value (computed by an independent method) confirms the
reliability of the proposed technique.
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