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We study the Laplace operator subject to Dirichlet boundary conditions in a two-
dimensional domain that is one-to-one mapped onto a cylinder (rectangle or infinite
strip). As a result of this transformation the original eigenvalue problem is reduced to
an equivalent problem for an operator with variable coefficients. Taking advantage
of the simple geometry we separate variables by means of the Fourier decomposition
method. The ODE system obtained in this way is then solved numerically, yielding
the eigenvalues of the operator. The same approach allows us to find complex reso-
nances arising in some noncompact domains. We discuss numerical examples related
to quantum waveguide problems. The aim of these experiments is to compare the
method based on the separation of variables with the standard finite-volume proce-
dure. For the most computationally difficult examples related to domains with narrow
throats one can clearly see the advantages of the proposed methad: Eisevier science

Key Wordseigenvalue; resonance; Laplace operator; perturbation theory.

1. INTRODUCTION

The object of this study is the Dirichlet Laplacian in a deformed cylinder (i.e., a doma
that is mapped onto a rectangle or an infinitely long strip, depending on whether the don
is compact or noncompact). A typical example of a deformed cylinder is a waveguide wh
the propagation of waves is governed by the Helmholtz equation. The two major type:
waves observed in waveguides are referred to as trapped modes and resonance solt
Both of these are eigenfunctions of the relevant differential equation and both satisfy
given boundary conditions. The trapped modes decay rapidly at infinity (the techni
condition is that they lie inC?) and the corresponding eigenvalues are real. The resonan
on the other hand satisfy a radiation condition at infinity. They represent quasistable st
of the system and correspond to complex eigenvalues. Their real parts give the ene
of the resonances while the inverses of the imaginary parts determine the lifetimes of
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328 ASLANYAN AND DAVIES

resonances. Resonances located close to the real axis are mathematically quite distinct
eigenvalues, but physically they have very similar effects on the behaviour of the syst:
It is quite common for a trapped mode to turn into a resonance with a small imaginary
when the region is slightly deformed.

There is a large literature studying resonances, particularly in quantum chemis
[20, 15, 19, 16] and acoustics [10, 17, 9, 6, 1, 18], to mention just the works most clos
related to this paper. The subject also arises in the study of quantum waveguides, w
are assuming increasing importance in the design of quantum-level electronic devices.
refer to the series of papers [13, 11, 12] where bound states and scattering in quar
waveguides are considered and to [22], where the authors address the problem of fin
guantum resonances numerically for a particular waveguide.

Despite the extensive analysis carried out in the mentioned and other related literat
there still exist substantial problems in computing resonances close to the real axis. At
same time, resonances with small imaginary parts are often regarded as the most impc
case occurring in applications. It is this situation that interests us and motivates our stu

Waveguide phenomena are usually associated with either Dirichlet or Neumann bounc
conditions. The former correspond to scattering problems in quantum theory, the la
appear in acoustics. The cited papers are concerned with either eigenvalues or reson:
occurring in waveguides under specific conditions, or both of these. Our paper is very cl
in spirit to [6] and [1]. In the former the main issue is the resonance—eigenvalue connect
and the technique of the latter is also based on the separation of variables.

Our intention is to study the above-mentioned problems numerically. Dealing with bc
of them involves solving a boundary value problem for the Dirichlet Laplacian in tw
dimensions, whichis either a self-adjoint eigenvalue problem or anon-self-adjointresona
problem. Along with general numerical methods applicable in two dimensions, there e
techniques especially designed for cylinderlike domains, also called ducts in acoustics.
have already mentioned [1, 18], where such methods are developed. Both of these pe
stress the importance of advanced methods specially designed for acoustic waveguid
is hardly surprising that carefully performed numerical analysis is equally important f
guantum problems. In [18] the authors apply a second-order finite-difference method
implement an iterative procedure for the resulting algebraic system. It is mentioned th
that standard methods not using any preconditioning are likely to fail, especially whe
large wave number is involved.

The numerical approach proposed in [1] is similar in spirit to that of our paper. In bo
cases the Helmholtz equation is reduced to the so-called coupled mode system of equa
via the separation of variables. The main difference is that in [1] the coefficients of the OI
system have to be computed numerically, whereas our choice of the Fourier expan:
functions allows us to find them in closed form. This substantially reduces the CPU tin
The Dirichlet problem studied here is separable, as opposed to the much less straightfor
Robin case. The examples in the cited paper are related to higher frequencies while
concentrate on the lowest oscillation mode only. On the other hand, the transfer methoc
use for the final ODE problem is able to handle a waveguide with narrow throats, suct
that illustrated in Fig. 1—a situation not covered in [1].

The aim of this paper is to elaborate a method suitable for deformed cylinders that ta
account of their geometry. The method based on the Fourier decomposition in one direc
allows us to separate variables in the Helmholtz equation explicitly, leading to a systen
ODEs. This is done for a fairly general geometry in the next section. In Section 3 we disc
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FIG. 1. Waveguide with indentations.

different boundary conditions involved. First we deal with standard self-adjoint conditior
then we concentrate on noncompact domains and define resonances by a specific bou
condition at infinity. What is often called the radiation condition in the literature is rewritte
in terms of the resulting ODE system. We end up with a non-self-adjoint eigenvalue probl
on a finite interval whose solution approximates that of the original resonance proble
Finally, we use the transfer method of [2] to find the eigenvalues of the two problems. C
numerical results illustrate the closeness of eigenvalues and resonances and are pre:
in Section 4, where we conclude by discussing the rate of convergence.

To be able to compare the method of the paper with others we look at the finite-volu
method described, for example, in [21]. As discussed in Section 4, the proposed appre¢
tested on our eigenvalue examples proved to be significantly more efficient than the stan
two-dimensional procedure.

2. SEPARATION OF VARIABLES FOR THE LAPLACIAN

2.1. Change of Variables

Consider the operatdf := —A acting on£?(2) subject to Dirichlet boundary condi-
tions. The domaim2 is defined as

Q={¢Ema<é<b 0<n<ep@®)l (2.1)
in Cartesian coordinate, n). The possibility ofa andb being infinite is not excluded

here, so thaf2 is not necessarily compact. The functip() is assumed to be smooth and
to satisfyp(§) > 0, & € [a, b]. To find the spectrum ofl we solve the Helmholtz equation

with the boundary conditions

f¢&.m =0 (¢ neon. (2.3)
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The change of variables

X=£& y=n/e®) (2.4)
maps the deformed cylind€r onto Qo = {(X, y): a < X < b, 0 < y < 1}, which is either
a rectangle or a strip (infinite or semiinfinite). We mention that a similar method has be
used by Borisowet al. [7] to study bound states associated with a local perturbation of

strip or layer. In our case the deformation reduces the width of the strip locally, and th
are no bound states. The transformation (2.4) can be expressed in the differential form

2 19y
a

VEV] = Wva, ny = 3X 5 W = O 1(p .
dy 7

The quadratic form corresponding kbis given by
J(f) = /Q[(Vgnf, Ve, ) — A(f, £)]1d& dp
or, equivalently, by
J(f) = /Q [(WVyy f, WVyy F) — A(f, )]@(x) dx dy.
0
This can be rewritten as

J(f) = [(AVyy |, Viy F) — A(F, H)]e(x) dx dy, (2.5)
Qo

1 _ey
A=WW = ( 4 ) (2.6)

oy  (A+@y?
(pz

where

Hence the Helmholtz equation in the new variables takes the form

(pfx — (Qﬁ/yfx)y - ((ﬂlyfy)x + 1+ (QDIY)Z) fy/@)y + rpf =0. (2.7)

Since we restrict ourselves to the Dirichlet case, no change in the boundary conditi
is required here; the condition (2.3) is retained@ty. However, in a generic situation one
can still use (2.4) and (2.7), provided obvious changes are made to the original bounc
conditions where necessary. For instance, instead of Neumann boundary conditieas at
(&) one would have

(L+ ¢ fy — 99’ foly=1 =0,
while Neumann boundary conditions»at= a, b would become

(pfx — @'y Ty Ix=ab-
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Note that a similar transformation can be also done for a more general domain:

Q={¢Emna<é<b ¢(§) <n<gab)}
The change of variables

n—«e¢1
@2 — @1

X = ";:7 y =
leads to a quadratic form of type (2.5), whose coefficients are not quoted here, for bre\

2.2. Discretisation in the y-Direction

The quadratic form (2.5) is related to the transformed operator on the weighted sp
L%(Q0, ¢ dx dy). Here and below we use the notatign= Vxy-

To discretise the fornd (f) in the y-direction let us separate the variables expanding
as

FOGY) = g(Nh(X). (2.8)

k=1

Recall that we have Dirichlet boundary conditions everywhere so that our natural choic
to work with an orthonormal system of functions vanishing at the horizontal parts of t
boundary. We therefore opt for

Ok = V2 sin(zky).

Denotefy = f, fy = fy, fo = fy; then

fi=> h0g),
k=1

where
90 =0 = Gk OF = v2cogrky).
In this notation thex-dependence is determined by the functions
hO=he, hl=h,, hZ=mrkh

(throughout the paper a prime denotes differentiation with respegt to
We notice that the variables are separated in the coefficierité fof

(XA (X, Y) =Bjx)+Cj(y)Dijx), i,j=12 (2.9)

The entriesA;; of the matrix A are defined by (2.6); the matric& C, and D satisfying
the above decomposition are

0 0 0 —¢
B=<(p 1)7 C=< y)v D= , 2 .
o 2 y ¥ —¢
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The formula (2.9) allows us to rewrite (2.5) in the form
2

J(f)_/ / [Z(B.ﬁ—C.,D.,)f f; —A¢|f|]dxdy
i,j=1
[l
a ',J‘:

1 _ 1 _ 1
ZBij/ fifjdy—i-Dij/ Cijfif,-dy—/\go/ |f|2dy]dx
= Jo 0 0
b 2
:/ [Z Bij Eij + Dij Fij — 2¢G
a

ij=1

dx. (2.10)

As we substitute the expansion (2.8) into the above integral, the coeffiéignts;, G are
readily computed:

e = [ fitiay= [ Sa Y nolay
k r
=> hh) / g9l dy = > oy hih/
k,r 0 k,r
Fij :‘/0 Cijfif]‘ dy=/0 C.,Zh'kg{(Zh,'gr' dy
k r
= SoRN [ cugdl dy= 3 AR
k,r 0 k,r
/thgk O dy = 3 hy 2.
k

To find o, ‘we use the orthogonahty relations fgg; in fact, we only need the diagonal
elementh = 8kr. The coeﬁ|C|ent$3 are also calculated in the closed form:

%+2njz;k2s k=r,
11_0 ﬂ22_
IBkr - % kr — K )
(=D _HW, k#r,
o e=r
:3 —IBrk - K oK
(D iy, K#T

The quadratic form is now reduced to that of a one-dimensional differential problem.

2.3. Canonical ODE System

Having done the above calculations we finally arrive at

o= [ (2 -

+Z 2kr,8 hehe — & . (rﬂ Zhihe + kBiZhihy ) ¢ dx.
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The Euler equations are easily derived in the standard way. A simple calculation sh
that the discretised form (2.10) is equivalent to the ODE system written in its canoni
self-adjoint form as

—(Ph) + QW — (Q*h)’ + Rh=0. (2.11)
Here the vector of unknowns is
h=(hyhy..)";
the matrix coefficients are given by

P = @dkr, Qur = _”k,Brlsz/’/v
(k)2

/2

erznzkrﬂfrz(/:p+< —A(p) Sy Kr=12....
For practical purposes we truncate the system to a finite number of equations, takir
sufficiently largeN and keeping the same notatibnP, Q, R for the truncated matrices
wherek,r = 1,..., N. This is justified by the fact that the Fourier coefficients involvec
in (2.8) are rapidly decaying ik and therefore higher order terms can be neglected. In [’
it has been suggested thidtshould be of ordeh+/%, whereh denotes the mean width
of the duct if the curvature of its boundary is not too large. In the examples in Sectior
the width of the waveguide varies greatly from point to point. The sizd & determined
experimentally and is found to depend mainly on the width of the narrowest portion of t
waveguide.

Equivalently, we reduce (2.11) to the Hamiltonian systemMfejuations,

JH = K(x, )H, xeR, (2.12)

_ h 5 (0 I
H_<Ph’+Q*h>EE(R)’ J_<I O)’

_ -1+ _ -1
K=< R+ QP 1Q QP >

where

_p—lQ* p-1

The system (2.12) is self-adjoint with = P* > 0, R = R* for A € R. We can therefore
apply advanced numerical methods (see, for example, [2, 3]) to find the eigenvalues of
problem and the relevant solutions. Before proceeding to this task let us discuss the i
of boundary conditions.

3. BOUNDARY CONDITIONS

3.1. The Self-Adjoint Problem

To make sure the original boundary conditions are involved in the ODE problem, consi
a generic situation when we have a functional
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J(f) =/ F(x,y, f, fy, fy)dxdy.
Qo
To derive the corresponding Euler equation we replaegth f 4 ¢y and compute
83—5/ Fr— 2 r - LB ) dxd +e/ (F, dy — Fy, dx)
- Qoy P ox & oy fy y moy h & b

Putting the firstintegral equal to zero we obtain the differential equation (2.7); the secon
responsible for boundary conditions. For our class of probléfag={y =0} U {y =
1} U {x = a} U {x = b}. The conditions at different parts of the boundary are define

by
b 1
/nyy|y:0:ldX=0; /Vfo
a 0

Taking account of the obtained quadratic form, we get

dy =0.

x=a;b

b
a

b ) 1+ 2
/ 14 ((/7 (x) fyx — 4 fy)
a %

on the horizontal lines. As pointed out in Section 2.1, Dirichlet boundary conditions remé
unchanged in the new variables and are automatically taken into account by virtue of
choice of the functiongk(y) in (2.8). The above integrals (3.1) and (3.2) vanish becaus
of the implied conditiony = 0. A difficulty would only occur if we had more complicated
conditions at the curvilinear part of the boundargoDirichlet boundary conditions are the
ones relevantto quantum mechanical problems and they enable us to separate the variat
the quadratic form explicitly. We refer to [1], where the authors consider arbitrary bound:s
conditions of the form(af + bg—;)bg = 0 by using appropriate orthogonal curvilinear
coordinates. The problem of this kind requires a more complicated expansion to be u
instead of (2.8). In that case Fourier coefficients are not obtained in closed form but shc
be calculated numerically.
On the vertical parts of the boundary we have

dx =0 (3.2)
y=1

1
/ 30T — @'yEy) b dy = O. (3.3)
0

The Dirichlet case is as easy to treat as before: the conditipfe = hx(b) =0, k =
1,..., N are imposed on the solutions of (2.12). Consider also a domain wh@ge=

¢’ (b) = 0—the situation typical for compactly perturbed strips and, in particular, for son
waveguides. Here we are able to handle a more general case. For instance, Neumann b
ary conditions atx = a, b do not change and beconmg(a) = hy(b), k=1,..., N in
terms of the system (2.12). However, one cannot fully separate variables in generic Rc
conditions of form (3.3).
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3.2. The Radiation Condition

There are three technically distinct methods of defining resonances. The one whict
give below involves imposing a so-called radiation condition at infinity on the eigenfunctic
In many situations, including the present one, this is known to be equivalent to the definit
via poles of the scattering matrix [8, 22, 6], but here we do not make essential use of
fact. One may also define resonances using a standard method referred to as (ext
complex scaling. The resonances of the original operator bed@reeenvalues of a new
non-self-adjoint operator; once again one may show that this method yields the same s
resonances. See below for further comments on this method.

Turning to our particular resonance problem, let us consider a damsirch that, in the
notation of Section 2.1 € (a, oo0) and

p(x)~1, x=X (3.4)

for some X > 0. Similar assumptions are often made in papers dealing with scatteri
problems, for instance in [1, 18, 6]. We take Dirichlet boundary conditions ®@rand
require a different type of condition to be satisfied»xs— co. Namely, for a giverk € C
there always exists a unique solution of (2.2) that has the form

f(X. y) = (eXp(—t1x) + Sy expitiX)ga(y) + > SGk(Y) expitix), X > X.  (3.5)
k=2

Here we denote

tc = —vV(@k)2 -1, Rety <0;

gk are the same as in Section 2.2. The coefficignts= 1, 2, .. . are defined by the formula
(3.5) uniquely for each value of We putw = +/A and consides; as functions of. The
functions;, called the scattering coefficient of the problem, is involved in the definition c
resonances. The reader will find their general definition in [8]. Note that when variables
separated the following construction proves to be more handy.

DEFINITION.  If the scattering coefficiers (w) has a pole ab = wo we say that. = w3
iS a resonance.

The above definition does not include all the resonances but only those lying on the
nonphysical sheet (see [8] for detailed explanation). We refer to [22, 6] for the equivalel
of the two definitions. Apart from its simplicity, the approach based on (3.5) has anotl
distinctive advantage. It is known from scattering theory fhéb)s; (w) = 1 and thats;
is analytic in the half-plane Ira < 0. Therefore instead of seeking the poles@f) one
can look for its zeros located in the lowerhalf-plane. This is the approach we use here
along with the separation of variables in the deformed cylirSeler

Given the above definition, there is an obvious difference between the resonance prot
and a classical spectral problem. Indeed, according to (3.5) here we are looking for a solt
exponentially growing at infinity. Note, however, that the resonances we are intereste
occur as perturbations of eigenvalues and are typically situated near the real axis. This m
that the values ofimty|, k =1, 2,..., are rather small and therefore the correspondini
solution grows slowly.
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Combining (3.5) with (2.8) for a sufficiently largewe get
hi(X) = exp(—t1X) + sy exptix), h (X)) = tyhe(x), k=2,3,....

There are two ways to handle these conditions. One can solve the inhomogeneous pro
(as has been done in [6] in two dimensions), then find the zerss dfiternatively one
can puts; = 0 straight away, then solve the resulting eigenvalue problemitependent
boundary conditions. The latter approach leads to the set of boundary conditdns at

UxH(X) =0, yx=(T—-P1Q* P, T=diagty, —ts...,—tyn). (3.6)

This formula, known as the radiation or outgoing wave condition, singles out the soluti
whose first component grows and whose others decay exponentially at infinity. It is t
solution that is sometimes called the resonance eigenfunction.

It should be mentioned here that our approach agrees with the one that uses ext
complex scaling (see, for example, [8]). In this technique one replaces the operator wi
family of operators on the same domain, which depends analytically on a complex param
The operators are independent of the parameter forX and are associated with a space
scaling forx > X. One computes the complex eigenvalues of this family actidg i) and
proves that they do not depend on the parameter, subject to certain conditions. It is kni
that the complex eigenvalues coincide with resonances defined via either the scatte
coefficients or analytic continuation of the resolvent kernels. One may verify that exter
complex scaling yields the same boundary conditiox at X as (3.6) (see [14]).

4. NUMERICAL EXAMPLES

4.1. The Transfer Method

Summarising the results of the first three sections let us formulate the problems tc
solved numerically. We are looking for such values tifat the system (2.12) has a nontrivial
solution satisfying

YaH@ =0, vypH() =0,

where ()ya = vp = (I, 0)and (i) ya = (I, 0), ¥, = ¥, as defined by (3.6). Problem (i)
provides approximations to the Dirichlet eigenvalues of a compact domain of kind (2.
problem (ii) enables us to calculate complex resonances that may occur in an unbour
domain of the same type satisfying (3.4).

The method we apply to both problems is based on the orthogonal transfer of [2], wh
we briefly outline below. The manifold of the solutions of the system (2.12) satisfying tt
left boundary condition is determined by

Y(X)H(X) =0, a<x<b,
wherey e CN*2N solves the Cauchy problem

V' =y JIK, ¥@ = a
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Theoretically one can integrate the above equation for a fixelgfine

FG = det(‘”(b; “)
Yp(A)

and solvef (1) = 0 to find the eigenvalues of the problem. This method is known to
hopelessly inefficient becauggx), although formally of rankN, can have almost linearly
dependent rows. Abramov [2] proposed replacmgvnh W(x) = v(X)¥(x), wherev €
CN*N_detv # 0. The functionv is chosen to ensurgé (x)*(x) = const. The transfer
equation now takes the form

VA TIA( =) ) =0, d@ = e (4.)

The RHS of (4.1) is bounded and the solutigrexists on the whole ofd, b]. By com-
parison withyr, the matrixys has the key advantage of being easily computed withot
loss of rank. The use of this idea proved essential to obtaining stable results for |
problem.

Having calculated the smooth functighwe proceed to find the eigenvalues. For the
resonance problem this is done along the lines of [4], where the idea of [2] has been apy
to non-self-adjoint eigenvalue problems. As observed there,

fn) = det(‘[’(b)> = f () detv,
Yb

so that the zeros of and f coincide. Moreover, the zeros df can be found using the
method based on the argument principle, altho@ighoes not have to be analytic inas
opposed tof . Still the number of zeros of inside a contour is

1 .
N = —fdArgf()»),
27T r

as shownin[4]. Itis this computational formula that we use to locate the complex eigenval
of problem (ii). Taking a shrinking sequence of contoinse find the zeros up to a chosen
accuracy. We computed the contour integrals reliably for circles of radii down t6 10
and made sure that if the centre was shifted by a similar order of magnitude, the integ
vanished. In the better conditioned case (i) we applied Newton’s method, allowing us
calculate the eigenvalues of the self-adjoint problem.

Note that typically problem (ii) is much harder to solve than is (i), and our examples ¢
no exception. When resonances are situated near the real axis the scattering cogfficie
has a pole and a zero close to one another. Naturally, the closer they are, the less stab
problem is.

4.2. Results of Computations

As an example we consider a quantum waveguide with indentations defined in the Ce
sian coordinate&, n) as

W = {—oo <&E<o00,0<n<opE)= 1—01(6_(35_}’)2 +e‘(5+’”>2)},

wherex andy are real positive constants (see Fig. 2a).
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@ a=09 | (b) o = 0.9999
% /™ N O\ /

FIG. 2. Narrow-throated domains.

We work in two different domains:
Q1 =WnNn{0<é&<y}, Q=WnN{0<E&}

The domaing2; and€2; relate to problems (i) and (ii) of the previous section, respectively
In the latter the resonance boundary condition is imposed at a sufficiently far)poas
suggested in Section 3.2. In our experiments we/ptt 2, so that it suffices to take > 5.4

to ensurep’(X) < 1074,

In this example there exists = o, &~ 1 such that the two parts @2 touch one an-
other nearé = y. For this value ofa the domain2 consists of three disjoint parts,
as shown in Fig. 2b, so that the eigenvalue problem is decomposed into three sep:
problems. The Laplacian considered in the compact dorftaihas infinitely many real
eigenvalues accumulating at infinity. As we decreageining the three subdomains, one
expects the eigenvalues to disappear, generating resonances in their neighbourhoc
similar phenomenon, where resonances originate from eigenvalues as the domain is
turbed, has been observed in [6], although the mechanism by which they emerge is diffe
here.

Clearly, both domains§2; and 2, satisfy the conditions of Section 2.1 fer< «,. We
compute resonances (i.e., eigenvalues of problem (ii) for a rangeusfing the deformed
cylinder approach. In the self-adjoint example the eigenvalues of problem (i) are fou
for the same values ai. The ODE problem is solved by the transfer method describe
in the previous section. An important question is how to choose the number of terms
be retained in (2.8) or, in other words, the dimension of the system (2.12). This num
should depend om: indeed, forx close tox, the width of the domain is small near= y,
so one needs to keep a larger number of tegpty) in (2.8). There are two possibilities
here. One is to increase repeatedly the number of terms by one and solve the system
the corresponding constant number of unknowns until the answers converge. Or, instes
keeping a large number of terms throughout the interval, one can start off with a sma
N in (2.12). Moving along th-interval one changehl gradually, adding or removing
variableshi(x) depending on the size gf(x). We have used both techniques in different
situations, ensuring that the results coincide within the chosen accuracy for two subseq
values ofN. For reasonably small values efit suffices to take smalleN: for instance,
whena = 0.8 the results obtained fdd = 4 and greater coincide up to the tolerance of
10~4. The maximal number of terms taken in our computationsl is- 30 for o = 0.97
(the largest value considered).
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There is an important connection between problems (i) and (ii) which makes us stt
them within the same framework. Namely,@as~> «, both the eigenvalues &t; and the
resonances of2, converge to the Dirichlet eigenvalues of the dom@in These cannot
be found using the same method beca@2sehas a cusp & = y and is not a deformed
cylinder in our terminology. In this case one could still separate variables in the Helmhc
equation in a similar way, arriving at a singular ODE problem. This question requires
separate consideration, which is beyond the subject of our paper. Recall that the aim o
numerical experiments is to calculate resonances occurring in this example and find
how they are related to eigenvalues. To be able to make proper comparisons we have
the finite-volume method to discretise the operato€nrand find its spectrum. To know
the limit eigenvalue is also helpful, as it serves as an initial guess for the eigenvalue:
problems (i) and (ii).

4.2.1. The self-adjoint problemWe applied both the finite-volume method and the
ODE technique to a series of problems of type (i) to compare the effectiveness of the
approaches. The comparisons are in favour of the proposed method, which appears
more efficient than the conventional one. The relative benefits of our technique are rr
spectacular for larger values af Fora > 0.9 the finite-volume method becomes very
unstable and does not provide accurate results any longer, while the new method w
safely forawider range, up to= 0.97. The two methods agree with each othepfor 0.9.
Everything else being equal, the closegets to its critical value, the more advantageou:
the deformed cylinder approach is in comparison with the finite-volume method.

Of course if one were to use commercial packages, one could surely teeabamewhat
bigger than ® by using standard methods, but the same comment could be made at
our method: if it were developed at a commercial level several further elaborations co
be incorporated to improve its performance.

The numerical results presented below are related to the lowest Dirichlet eigenvalu
Q, and are quoted in terms of the wave numbes /A (we retain the term eigenvalue
for the wave numbers). The smallest eigenvalue corresponding to the domain with
cusp isw, = 4.6252; it is included in the diagrams to illustrate the convergence of ol
results.

In Fig. 3 a series of the eigenvalues of problem (i) do€ [0.7, 0.97] is shown. They
converge ta, ase — a,. The linear rate of convergence is in agreement with standard pe
turbation theory: the principal correction term is of ordet «,, — « since the coefficients
of (2.12) depend on linearly.

4.2.2. The resonance problemWe showed in Section 3.2 that the problem of finding
resonances effectively reduces to a non-self-adjoint boundary value problem in a trunce
compact domain. The resonances can then be computed using various methods, for ins
a non-self-adjoint version of the finite-volume method. An example similar to those
our paper has been numerically studied in [6], where the reader can also find a dete
description of the method put in the relevant context. It is that procedure that we use
benchmark the separation-of-variables approach and make further comparisons.

The resonances, emerging from the lowest eigenvalue @glecreases can be found
in Table I. They are also shown in Fig. 4, where their real parts are plotted against t
imaginary parts. The quoted resonances are obtained using the new method and they
with those found using the finite-volume method up to the chosen accuraay<d.9,
beyond which the finite-volume method becomes unstable. On the other hand the resonce
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TABLE |
Resonancesv,
o wy o w2
0.7 42988+ 0.0545 0.9 45250+ 0.0050
0.75 43715+ 0.0348 0.925 45492+ 0.0032
0.8 44223+ 0.0212 0.95 45755+ 0.0017
0.825 44498+ 0.0154 0.96 45864+ 0.0012
0.85 44741+ 0.0113 0.97 45967+ 0.0008
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FIG. 3. Eigenvalues of problem (i) for a range @f
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FIG. 4. Resonances generateddy.
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FIG. 5. Real and imaginary parts of resonaneesiependence.

calculated by the separation-of-variables approach definitely convetge e problem

is, of course, very sensitive to perturbations near the critical value=efa,, or ¢ = 0.
However, we found that for < 0.97 our computations are relatively stable and believe
that they provide reliable results. For> 0.97 we have observed various instability effects,
preventing us from computing resonances accurately. The system (2.12) is difficult to s
for values ofw close tow, (and, consequently, the corresponding resonance) because
coefficients change very rapidly for ~ «,.. Even methods suitable for stiff systems fail
to produce satisfactory results wheris too small. As discussed in the previous section
another reason why the problem is likely to be unstable is the closeness of resonanc
the real axis. These two factors make calculations slow and inefficient ftwse tocw,.
Once again the non-self-adjoint analogue of the finite-volume method proves to be |
robust than our new procedure. The range of values, dbr which the results obtained
using the two methods are comparable, is the same as in the self-adjoint problems o
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TABLE Il
The Values of§ = w; — Rews

€ 0.3 0.25 0.2 0.175 0.15
s 0.0436 0.0256 0.0182 0.0144 0.0123

€ 0.1 0.075 0.05 0.04 0.03
s 0.0081 0.0044 0.0015 0.0008 0.0004

previous section. Far > 0.9 one cannot trust the standard discretisation technique, but t
deformed cylinder approach works f@erup to about (7.

The«-dependence of the real and imaginary parts of the resonance originatingfrom
is shown in Fig. 5. The real part is found to depend on the perturbation parameter linee
whereas the imaginary part seems to be of osflewith p ~ 3/2 fore < 0.2. A different
behaviour has been observed in [6], where for a different geometry the authors derive
asymptotic formula for the imaginary part of the resonance. The resonances in the exar
of that paper are shown to be analytic in the domain perturbation parameter, their imagir
parts depending quadratically on the parameter.

One generally expects that if one perturbs an eigenvalue which is embedded in
continuous spectrum, thenitis transformed into a resonance near the real axis. In many ¢
one can even write out a perturbation expansion, and a general theory for some such ¢
was described by Agmon [5]. However in our situation the natural paramegeronly take
positive values, for obvious reasons. Therefore even if the resonance depends analyti
on ¢ for ¢ > 0, there is no proof that it has an expansion with finite coefficients arour
¢ = 0, nor even that the resonance converges to the eigenvalue 8s The numerical
experiments do, however, suggest that not only does it converge, but its real and imagil
parts also may be expanded in powers%f ase | 0.

InTable Il the eigenvalues of problem (i) are compared with the real parts of the resonar
related to the same values @f We tabulate the differenck= w; — Rew, between the
Dirichlet eigenvalue and the real part of the associated resonance and observe thal
guantity decreases very rapidlyag 0. One might hope to deduce the rate of convergenc
of § (¢) from asymptotic perturbation formulae. The question of how to obtain such formul
for the resonance still remains open.

5. CONCLUSIONS

The main idea of this paper was to reduce an eigenvalue problem in a two-dimensic
deformed cylinder to an ODE problem. Complex resonances occurring in deformed sti
were also dealt with in the same way.

The method of this paper allowed us to discretise the problem in one direction, taking il
account the geometry of the domain. This was especially important for the highly distor
domains of Section 4. We could of course have considered only perturbed cylinders (
cylinders for which the throat is quite wide), but in this case a variety of different numel
cal codes would have yielded the same results without difficulty. The case of very narr
throats is much more challenging. The intrinsic instability of the problem might in principl
be handled either by the use of finite meshes, which are highly refined near the throat, o
normalisation to a straight cylinder, in which case one must accept the appearance of |
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coefficients in the relevant differential operator. Eventually any method will fail, and the |
sue is how close one can get to the critical value. The relative advantage of our method r
upon the special techniques available for one-dimensional systems, which are highly
veloped at a theoretical level and easy to implement numerically. Standard finite-differe
methods would require a significant mesh refinement in the narrow part of the conside
waveguide. For comparison purposes we also computed the eigenvalues and reson
using the finite-volume method. As discussed in the previous section, the latter proved t
substantially less efficient than the method based on the separation of variables for the
of problems studied here. The new method works faster and, more importantly is abl
treat a wider range of problems. This is in agreement with the already mentioned result
[1, 18], where other advanced methods were designed to suit similar problems. We
lieve that our approach is competitive and recommend it for ill-conditioned eigenval
and resonance problems. Our confidence is supported by the strong agreement bet
numerical results and analytic expectations. Indeed, the convergence of both eigenve
and resonances to their limit value (computed by an independent method) confirms
reliability of the proposed technique.
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